Optimized guide RNA structure for genome editing via Cas9
نویسندگان
چکیده
The genome editing tool Cas9-gRNA (guide RNA) has been successfully applied in different cell types and organisms with high efficiency. However, more efforts need to be made to enhance both efficiency and specificity. In the current study, we optimized the guide RNA structure of Streptococcus pyogenes CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system to improve its genome editing efficiency. Comparing with the original functional structure of guide RNA, which is composed of crRNA and tracrRNA, the widely used chimeric gRNA has shorter crRNA and tracrRNA sequence. The deleted RNA sequence could form extra loop structure, which might enhance the stability of the guide RNA structure and subsequently the genome editing efficiency. Thus the genome editing efficiency of different forms of guide RNA was tested. And we found that the chimeric structure of gRNA with original full length of crRNA and tracrRNA showed higher genome editing efficiency than the conventional chimeric structure or other types of gRNA we tested. Therefore our data here uncovered the new type of gRNA structure with higher genome editing efficiency.
منابع مشابه
Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA.
Targeted mutagenesis, editing of endogenous maize (Zea mays) genes, and site-specific insertion of a trait gene using clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)-guide RNA technology are reported in maize. DNA vectors expressing maize codon-optimized Streptococcus pyogenes Cas9 endonuclease and single guide RNAs were cointroduced with or without DNA repai...
متن کاملOptimizing multiplex CRISPR/Cas9-based genome editing for wheat
Background: CRISPR/Cas9-based genome editing holds a great promise to accelerate the development of improved crop varieties by providing a powerful tool to modify genomic regions controlling major agronomic traits. The effective deployment of this technology for crop improvement still requires further optimization of the CRISPR/Cas9 system for different applications. Here we have optimized mult...
متن کاملDramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design.
Success with genome editing by the RNA-programmed nuclease Cas9 has been limited by the inability to predict effective guide RNAs and DNA target sites. Not all guide RNAs have been successful, and even those that were, varied widely in their efficacy. Here we describe and validate a strategy for Caenorhabditis elegans that reliably achieved a high frequency of genome editing for all targets tes...
متن کاملIn vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni
Several CRISPR-Cas9 orthologues have been used for genome editing. Here, we present the smallest Cas9 orthologue characterized to date, derived from Campylobacter jejuni (CjCas9), for efficient genome editing in vivo. After determining protospacer-adjacent motif (PAM) sequences and optimizing single-guide RNA (sgRNA) length, we package the CjCas9 gene, its sgRNA sequence, and a marker gene in a...
متن کاملHigh Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes
Homology-directed repair (HDR) of breaks induced by the RNA-programmed nuclease Cas9 has become a popular method for genome editing in several organisms. Most HDR protocols rely on plasmid-based expression of Cas9 and the gene-specific guide RNAs. Here we report that direct injection of in vitro-assembled Cas9-CRISPR RNA (crRNA) trans-activating crRNA (tracrRNA) ribonucleoprotein complexes into...
متن کامل